Natural Scene Image Modeling Using Color and Texture Visterms

نویسندگان

  • Pedro Quelhas
  • Jean-Marc Odobez
چکیده

This paper presents a novel approach for visual scene representation, combining the use of quantized color and texture local invariant features (referred to here as visterms) computed over interest point regions. In particular we investigate the different ways to fuse together local information from texture and color in order to provide a better visterm representation. We develop and test our methods on the task of image classification using a 6-class natural scene database. We perform classification based on the bag-of-visterms (BOV) representation (histogram of quantized local descriptors), extracted from both texture and color features. We investigate two different fusion approaches at the feature level: fusing local descriptors together and creating one representation of joint texture-color visterms, or concatenating the histogram representation of both color and texture, obtained independently from each local feature. On our classification task we show that the appropriate use of color improves the results w.r.t. a texture only representation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scene Image Classification and Segmentation with Quantized Local Descriptors and Latent Aspect Modeling THÈSE

The ever increasing number of digital images in both public and private collections urges on the need for generic image content analysis systems. These systems need to be capable to capture the content of images from both scenes and objects, in a compact way that allows for fast search and comparison. Modeling images based on local invariant features computed at interest point locations has pro...

متن کامل

Natural scene text localization using edge color signature

Localizing text regions in images taken from natural scenes is one of the challenging problems dueto variations in font, size, color and orientation of text. In this paper, we introduce a new concept socalled Edge Color Signature for localizing text regions in an image. This method is able to localizeboth Farsi and English texts. In the proposed method rst a pyramid using diff...

متن کامل

Modeling of Texture and Color Froth Characteristics for Evaluation of Flotation Performance in Sarcheshmeh Copper Pilot Plant, Using Image Analysis and Neural Networks

Texture and color appearance of froth is a discreet qualitative tool for evaluating the performance of flotation process. The structure of a froth developed on the flotation cell has a significant effect on the grade and recovery of copper concentrate. In this work, image analysis and neural networks have been implemented to model and control the performance of such a system. The result reveals...

متن کامل

Color scene transform between images using Rosenfeld-Kak histogram matching method

In digital color imaging, it is of interest to transform the color scene of an image to the other. Some attempts have been done in this case using, for example, lαβ color space, principal component analysis and recently histogram rescaling method. In this research, a novel method is proposed based on the Resenfeld and Kak histogram matching algorithm. It is suggested that to transform the color...

متن کامل

Towards a Fusion of Region-based and Saliency-based Models

This thesis addresses the problems of automatic image annotation (AIA) for the purpose of image indexing & retrieval in an Annotation Based Image Retrieval (ABIR) system. Specifically, we study different models of image representation in the AIA area. Up to our knowledge, nobody has tried to combine the following approaches for image representation: region-based approach and saliency-based appr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006